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Abstract

This review illustrates how elastomer reinforcement can be modeled using Monte Carlo simulations on rotational isomeric state chains to

characterize their spatial configurations in the vicinity of filler particles. The results are distributions of the chain end-to-end distances as

perturbed by this excluded-volume effect, and the results obtained are in agreement with experimental results gotten by neutron scattering.

The use of these distributions in standard molecular theories of rubberlike elasticity then produces stress–strain isotherms suitable for

comparison with those in elongation experiments. Such simulations have now been carried out for elastomeric matrices reinforced by

spherical filler particles (either on a cubic lattice or randomly dispersed), or by prolate or oblate particles on cubic lattices (either with their

axes oriented or randomized). The simulated mechanical properties are consistent with experimental results available at the present time, and

should provide encouragement and guidance for additional simulations and experiments.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

One of the most important unsolved problems in the area

of elastomers and rubberlike elasticity is the lack of a good

molecular understanding of the reinforcement provided by

fillers such as carbon black and silica [1–5]. This issue has a

number of challenging aspects with regard to basic research

in polymers in general, and is of much practical importance

since the improvements in properties fillers provide are

critically important with regard to the utilization of

elastomers in almost all commercial applications. Some of

the work on this problem has involved analytical theory

[6–12], but most of it is based on a variety of computer

simulations [13–40].

In this context, the present review describes one way in

which computational modeling has been used to elucidate

the structures and properties of elastomeric polymer

networks, using illustrative studies from the authors’

research groups. One of the main goals has been to provide
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guidance on how to optimize the mechanical properties of

an elastomer, in the present case by the incorporation of

reinforcing fillers. In the present approach, the simulations

focus on the ways the filler particles change the distribution

of the end-to-end vectors of the polymer chains making up

the elastomeric network, from the fact that the filler

excludes the chains from the volumes it occupies. The

changes in the polymer chain distributions from this filler

‘excluded volume effect’ then cause associated changes in

the mechanical properties of the elastomer host matrix.

Single polymer chains are modeled, in the standard

rotational isomeric state representation [41–43], and

Monte Carlo techniques are used to generate their

trajectories in the vicinities of collections of filler particles.

A brief overview of the approach is given in the following

section.
2. Description of simulations
2.1. Rotational isomeric state theory for conformation-

dependent properties

In rotational isomeric state models, the continuum of
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Fig. 1. Comparisons among the rotational isomeric state distribution

functions for the end-to-end distance r for polyethylene and poly

(dimethylsiloxane) (PDMS) chains having nZ20 skeletal bonds of length

l, and the Gaussian approximation for the PDMS distribution. From

Ref. [45], with permission from the American Institute of Physics.
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rotations occurring about skeletal bonds is replaced by a

small number (generally three) of rotational states that are

judiciously chosen. Preferences among these states is then

characterized by Boltzmann factors as statistical weights,

with the required energies obtained by either potential

energy calculations or by interpreting available confor-

mation-dependent properties in terms of the models.

Multiplication of matrices containing these statistical

weights is then used to generate the partition function and

related thermodynamic quantities, and multiplications of

similar matrices containing structural information is then

used to predict or interpret various properties of the chains

[41–43]. Examples of such properties are end-to-end

distances, radii of gyration, dipole moments, optical

anisotropies, etc. as unperturbed by intramolecular excluded

volume interactions between chain segments [44].

2.2. Distribution functions

The extension of these ideas most relevant in the present

context is the use of this model to generate distributions of

end-to-end distances, instead of simply their averages [45].

The same statistical weights were used in Monte Carlo

simulations to generate representative chains, and their end-

to-end distances r were calculated. The corresponding

distribution function was obtained by accumulating large

numbers of these Monte Carlo chains with end-to-end

vectors within various space intervals, and dividing these

numbers by the total number of the chains, N. The distances

were then placed into a histogram to produce the desired

end-to-end vector probability distribution function P(r) or

P(r/nl), where n is the number of skeletal bonds of length l.

The histogram generally consisted of 20 equally spaced

intervals over the allowed range 0!(r/nl)!1, since

previous studies showed that this choice was the most

suitable for obtaining probability distribution functions

[46]. The function P(r/nl) was smoothed using the IMSL

cubic spline subroutine CSINT. The smoothing procedure is

necessary for the proper calculation of the stress–strain

isotherms from the Monte Carlo histogram [46].

These distributions are very useful for chains that cannot

be described by the Gaussian limit, specifically chains that

are too short, too stiff, or stretched too close to the limits of

their extensibility. Some typical results are shown in Fig. 1

[45]. They document how bad the Gaussian distribution is

for short chains of polyethylene and poly(dimethylsiloxane)

(PDMS) particularly in the region of high extension that is

critical to an understanding of ultimate properties.

2.3. Applications to unfilled elastomers

The present application of these calculated distribution

functions is the prediction of elastomeric properties of the

chains within the framework of the Mark–Curro theory [45,

47] described below.

The distribution P(r) of the end-to-end distance r is
directly related to the Helmholtz free energy A(r) of a chain

by

AðrÞZ cKkT ln PðrÞ (1)

where c is a constant. The resulting perturbed distributions

are then used in the ‘three-chain’ elasticity model [48] to

obtain the desired stress–strain isotherms in elongation. For

the specific case of this model, the general expression for

DA takes the form

DAZ
v

3
½Aðr0aÞC2Aðr0a

K1=2ÞK3Aðr0Þ� (2)

for elongations that are ‘affine’ (in which the molecular

deformations parallel the macroscopic deformations in a

linear manner). Here a is the elongation ratio L/Li, v is the

number of chains in the network, and r0 is the value of root-

mean-square end-to-end distance of the undeformed net-

work chains.

One quantity of primary interest here is the nominal or

engineering stress f *, defined as the elastic force at

equilibrium per unit cross-sectional area of the sample in

the undeformed state:

f � ZKT
vDA

va

� �
T

(3)

Substitution of Eq. (2) into Eq. (3) then gives

f � ZK
vkTr0
3

½G0ðr0aÞKaK3=2G0ðr0a
K1=2Þ� (4)

where G(r)Zln P(r), and G0(r) denotes the derivative dG/dr.

The modulus (or ‘reduced stress’) is defined by [ f *]hf */

(aKaK2) and is often fitted to the Mooney–Rivlin
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semi-empirical formula [ f *]h2C1C2C2a
K1 [48,49], where

C1 and C2 are constants independent of deformation a.

Some typical results are shown in Fig. 2 [45], in which

the ordinate is the calculated value of the reduced stress or

modulus normalized by the value given by the Gaussian

limit. The value of unity is seen to be obtained for long

chains, in this case those having nZ250 skeletal bonds, as

expected. The shorter chains show upturns in modulus with

increasing elongation that are similar to those shown in

bimodal networks in which short chains are introduced to

give advantageous increases in ultimate strength and

modulus [50,51].

2.4. Applications to filled elastomers

In this case, the sameMonteCarlo simulationswere carried

out as was done for the unfilled networks, but now each bond

of the chain was tested for overlapping with a filler particle as

the chain was being generated [28]. If any bond penetrated a

particle surface, the entire chain conformation was rejected

and a new chain started. Some specific illustrative examples of

such investigations are given below.
3. Spherical particles

3.1. Particle sizes, shapes, concentrations, and

arrangements

The particle sizes of greatest interest are those used
Fig. 2. Elongation moduli of PDMS networks having 20, 40, and 250

skeletal bonds, in the Mooney–Rivlin representation. Values of the

modulus have been normalized by the number of network chains, the

Boltzmann constant, and the absolute temperature, and a is the elongation

ratio or relative length of the deformed sample. From Ref. [45], with

permission from the American Institute of Physics.
commercially, with small particles giving significantly

better reinforcement than larger ones. The primary particles

are generally assumed to be spherical. The concentrations or

‘loadings’ in the simulations are generally relatively small,

smaller than those used commercially, since larger

concentrations lead to unacceptably high attritions from

chains running into particles. In actual filled elastomers, the

particles are dispersed at least relatively randomly, but it is

of interest to do simulations on regular particle arrange-

ments as well [28].
3.1.1. Regular arrangements, on a cubic lattice

In these simulations, a filled PDMS network was

modeled as a composite of cross-linked polymer chains

and spherical filler particles arranged in a regular array on a

cubic lattice [14]. The arrangement is shown schematically

in Fig. 3. The filler particles were found to increase the non-

Gaussian behavior of the chains and to increase the moduli,

as expected. It is interesting to note that composites with

such structural regularity have actually been produced [52,

53], and some of their mechanical properties have been

reported [54,55].
3.1.2. Random arrangements, within a sphere

In a subsequent study [16], the reinforcing particles were

randomly distributed, as is illustrated in Fig. 4. The system

was taken to be a sphere having a radius equal to the end-to-

end distance of the completely stretched out chain. The

chain being generated was started at the center of the sphere,

and this was the only place a filler particle could not be

placed. Otherwise, the particles required to give the desired

loading were randomly dispersed over the sample volume

shown.
3.2. Distributions of chain end-to-end distances

Of greatest interest here is whether the particles cause

increases or decreases in the end-to-end distances, with this

expected to depend particularly on the size of the filler

particles, but presumably on other variables such as their

concentration in the elastomeric matrix as well.
Fig. 3. Schematic view of a polymer chain being generated within part of a

three-dimensional cubic filler matrix.



Fig. 4. Schematic view of a polymer chain and randomly-distributed filler

particles. The origin of the chain was placed at the center of the sphere of

radius R(sphere)Znl (maximum extension, rmax). All the filler particles

were placed randomly in non-overlapping arrangements within the sphere,

except of course at its center (where the chain started its trajectory). Chain

conformations that trespassed on any particle were rejected, and statistical

calculations were performed on the remaining, acceptable conformations.
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3.2.1. Typical results

Some illustrative results for filler particles within a

PDMS matrix is described in Fig. 5 [16]. One effect of the

particles was to increase the dimensions of the chains, in the

case of filler particles that were small relative to the

dimensions of the network chains. In contrast, particles that

were relatively large tended to decrease the chain

dimensions. Since these changes in dimensions arising

from the filler excluded volume effects are of critical

importance, it is necessary to put them into a larger context.
3.2.2. Relevant neutron scattering results

These simulated results on the distributions are in

agreement with some subsequent neutron scattering
Fig. 5. Radial distribution functions P(r) at TZ500 K for network chain end-to-end

as a function of the relative extension r/rmax, for PDMS networks having 50 skeleta

values of the volume percent of filler present are indicated in the inset. From Ref
experiments on deuterated and non-deuterated chains of

PDMS [56,57]. The polymers contained silica particles that

were surface treated to make them inert to the polymer

chains, as was implicitly assumed in the simulations. These

experimental results also indicated chain extensions when

the particles were relatively small, and chain compressions

when they were relatively large.

3.2.3. Comparisons with some related simulations

There have been several reports of simulations that have

yielded results in disagreement with the described simu-

lations and the corresponding scattering experiments. The

major difference in approach was the use of dense

collections of chains instead of single chains sequentially

generated in the vicinities of the filler particles. In particular,

the simulations by Vacatello [18,21,24,30,31] show only

compressions of the chains.

In a rather different approach, Mattice et al. [37,39]

generated particles within a matrix by collapsing some of

the chains into domains that would act as reinforcing filler.

They found that small particles did lead to significant

increases in chain dimensions, while large particles led to

moderate decreases, in agreement with the single-chain

simulations and scattering experiments!

3.2.4. Improvements in the model

Because of these discrepancies, the present simulations

were refined in an attempt to understand the differences

described [35]. This involved (i) relocating the particles

periodically during a simulation, (ii) starting the chains at

different locations, (iii) using Euler matrices to change the

orientations of the chains being generated, and (iv)

replacing the ‘united atom’ approach by detailed atom

specifications. None of these modifications significantly

changed our earlier results [13–16,19,20]. An additional
distances obtained from the Monte Carlo simulations. The results are shown

l bonds between cross links. The radii of the filler particles was 5 Å, and the

. [16], with permission from John Wiley and Sons, Inc.
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modification, generating dense collections of chains, is in

progress [58].

3.2.5. Distributions of particle diameters

Also in progress are simulations to determine any effects

of having multimodal distributions of particle sizes [59].

Looking at this issue was encouraged by the improvements

in properties obtained by using bimodal distributions of

network chain lengths in elastomers [50] and thermosets

[60], and bimodal distributions of the diameters of rubbery

domains introduced into some thermoplastics [61,62].

3.3. Stress–strain isotherms

There are two items of primary interest here, specifically

increases in modulus in general, and upturns in the modulus

with increasing deformation. Results are typically expressed

as the reduced nominal or engineering stress as a function of

deformation. The area under such curves up to the rupture

point of the sample then gives the energy of rupture, which

is the standard measure of the toughness of a material [63].

3.3.1. Typical results

Fig. 6 shows the stress–strain isotherms in elongation

[16] corresponding to the distributions shown in Fig. 5

There are substantial increases in modulus that increase with

increase in filler loading, as expected. Additional increases

would be expected by taking into account other mechanisms

for reinforcement such as physisorption, chemisorption, etc.

as described below.

3.4. Effects of arbitrary changes in the distributions

One additional interesting result is the observation that in

some cases, chain compression can also cause increases in

modulus. This is being clarified by making some arbitrary

changes in the distributions obtained and documenting the

effects these changes have on the corresponding simulated
Fig. 6. Nominal stress as a function of the elongation ratio calculated from

the distributions shown in Fig. 5. From Ref. [16], with permission from

John Wiley and Sons, Inc.
stress–strain isotherms. For example, the curves can be

shifted to lower and higher values of the chain dimensions,

as is illustrated by two of the curves in Fig. 7 [58]. The

‘fitted curve’ was produced as follows: the distribution of

end-to-end distances for the 500,000 Monte Carlo poly-

ethylene chains of 50 bonds at 550 K was fitted to a

Gaussian curve. In addition, this curve was shifted in

different directions mathematically to obtain other repre-

sentative curves called left-shifted, right-shifted, and up-

shifted.

This gives the isotherms shown in Fig. 8, which show the

expected increases in modulus when the chains are extended

by the filler excluded volume effect, and decreases when the

chains are compressed. Unexpected results are obtained,

however, when the distribution is narrowed (up-shifted) at

the same most-probable value of the chain dimensions as is

also shown in Fig. 7 [58]. The narrowing causes the peak

defining the most-probable value to shift upward to keep the

area under the curve the same, as is required. In this case, the

change in the shape of the distribution does indeed cause an

increase in the modulus, as shown in Fig. 8. These results

are admittedly preliminary, and, therefore, need to be

examined further and extended in additional simulations. In

any case, these results are consistent with those from other

simulations finding increases in modulus even when the

chains are compressed, since it demonstrates that the

mechanical properties can depend on subtle features of the

distribution, beyond merely some average value of the chain

dimensions!

3.5. Relevance of cross linking in solution

The cases where the filler causes compression of the

chain are relevant to another area of rubberlike elasticity,

specifically the preparation of networks by cross linking in

solution followed by removal of the solvent [63]. This is

shown schematically in Fig. 9. Such experiments were

initially carried out to obtain elastomers that had fewer

entanglements and the success of this approach was

supported by the observation that such networks came to

elastic equilibrium much more rapidly. They also exhibited

stress–strain isotherms in elongation that were closer in

form to those expected from the simplest molecular theories

of rubberlike elasticity.

In these procedures, the solvent disentangles the chains

prior to their cross linking, and its subsequent removal by

drying puts the chains into a ‘supercontracted’ state [63].

Experiments on strain-induced crystallization carried out on

such solution cross-linked elastomers indicated that the

decreased entangling was less important than the super-

contraction of the chains, in that crystallization required

larger values of the elongation than was the case for the

usual elastomers cross linked in the dry state [64,65]. The

most recent work in this area has focused on the unusually

high extensibilities of such elastomers [66–68].

In any case, the present simulations should help elucidate



Fig. 7. Arbitrary illustrative shifts in end-to-end distance distributions, to smaller and larger values of r. Also shown is an arbitrary illustrative narrowing of an

end-to-end distance distribution, at the same most-probable value of r.
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molecular aspects of phenomena in this area of research as

well.
3.6. Detailed descriptions of conformational changes

during chain extension

An illustration of this application involves the nominal

stress for syndiotactic polypropylene at TZ481 K as a

function of elongation for different chain lengths, for a filler

radius of 10 Å [40]. The Monte Carlo simulations were

performed using recently derived conditional bond prob-

abilities for stereo-regular vinyl chains [36]. The results are

shown schematically for chains having either 100 or 200

skeletal bonds in Fig. 10. At the beginning of the elongation,
Fig. 8. Normalized stresses calculated for the
the chains of the two different lengths followed the same

linear curve, which corresponds to the elastomeric region.

This linearity is consistent with the equation for the

deformation of a single chain in which the stress f* is

directly proportional to its end-to-end distance r [69].

Specifically,

f � Z
3kT

hr2i0

� �
r (5)

where hr2i0 represents the mean-square unperturbed dimen-

sion of the chain.

The ‘plastic’ region appears at lower elongations for

chains having 100 skeletal bonds, as compared with those

having 200. Chains of 100 bonds require greater stresses to
distribution changes shown in Fig. 7.



Fig. 9. Forming a ‘super-compressed’ network by cross linking in solution,

followed by drying.
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be elongated once this critical point is reached, and this need

for higher stresses can be explained in terms of its end-to-

end distance distribution [40]. Since the chains of 100 bonds

are already more extended than the chains of 200 bonds, the

amount of additional elongation they can endure until the

elastic region ends is more limited. Once the plastic region

is reached, the stress development shows the non-linear

character illustrated here, as the elongation is increased.
4. Ellipsoidal particles

4.1. General features

Non-spherical filler particles are also of considerable

interest. Prolate (needle-shaped) particles can be thought of

as a bridge between the roughly spherical particles used to

reinforce elastomers [70] and the long fibers frequently used

for this purpose in thermoplastics and thermosets [71].

Oblate (disc-shaped) particles can be considered as

analogues of the much studied clay platelets used to

reinforce a variety of materials [72–81].

4.1.1. Regular arrangements of prolate ellipsoids

In one particularly relevant series of experiments,

initially spherical particles of polystyrene (PS) were

deformed into prolate ellipsoids by (i) heating the

elastomeric PDMS matrix in which they resided above the
Fig. 10. The nominal stress at TZ481 K for syndiotactic polypropylene

shown as a function of elongation ratio for filler particles having a radius of

10 Å, for two values of the number of skeletal bonds in the chain.
glass transition temperature of the PS, (ii) stretching the

matrix uniaxially, and then (iii) cooling it under the imposed

deformation [82]. The technique is illustrated schematically

in Fig. 11. It is important to note that this approach also

orients the axes of the now-elliptical particles, as shown in

the middle section of the figure. If desired, the orientation

can be removed by dissolving away the host matrix, and

then redispersing the particles randomly within another

polymer that is subsequently cross linked. This is illustrated

in the bottom part of the sketch.

Some relevant simulations are summarized in Fig. 12

[59], which shows the moduli as a function of reciprocal

elongation for particles having the specified radius and

volume fraction loading. The values of the moduli pertain to

directions longitudinal (z) and transverse (x) to the particle

axial directions. The anisotropy in structure causes the

values of the modulus in the longitudinal direction to be

significantly higher than those in the transverse directions.

These simulated results are in at least qualitative

agreement with the experimental differences in longitudinal

and transverse moduli obtained experimentally [82].

Quantitative comparisons are difficult, in part because of

the non-uniform stress fields around the particles after the

deforming matrix is allowed to retract.

4.1.2. Randomized arrangements of prolate ellipsoids

In this case, isotropic behavior is expected, due to the

lack of orientation dependence between the non-spherical

particles and the deformation axis regardless of the shapes

of the particles. The simulated results confirmed this

expectation that the reinforcement from randomly-oriented

non-spherical filler particles is isotropic regardless of the

anisometry of their shapes. There may be difficulties on the

experimental side in obtaining completely randomized

orientations (and dispersions), because of the tendency of

non-spherical particles to order themselves, particularly in

the types of flows that accompany processing techniques or

even the simple transfers of polymeric materials.

4.2. Oblate ellipsoids

In spite of their inherent interest, relatively few

simulations have been carried out on fillers of this shape.

4.2.1. Regular arrangements

The particles were again placed on a cubic lattice [20],

and were oriented in a way consistent with their orientation

in PS-PDMS composites that were the subject of an

experimental investigation [83]. In general, the network

chains tended to adopt more compressed configurations

relative to those of prolate particles having equivalent

volumes and aspect ratios. The elongation moduli were

found to depend on the sizes, number, and axial ratios of the

particles, as expected. In particular, the reinforcement from

the oblate particles was found to be greatest in the plane of

the particles, and the changes were in at least qualitative



Fig. 11. (A) An originally spherical filler particle being deformed into a prolate (needle-shaped) ellipsoid by stretching a polymer matrix in which it resides. (B)

This in situ approach also orients the axes of the deformed particles in the direction of the stretching. (C) This orientation can be removed by dissolving away

the film matrix and then redispersing the ellisoidal particles isotropically within another polymer, to reinforce it.
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agreement with the corresponding experimental results [83].

In the experimental study, axial ratios were controllable,

since they were generally found to be close to the values of

the biaxial draw ratio employed in their generation. The

moduli of these anisotropic composites were reported, but

only in the plane of the biaxial deformation [83]. It was not

possible to obtain moduli in the perpendicular direction,

owing to the thinness of the films that had to be used in the

experimental design.
4.2.2. Randomized arrangements

With regard to the simulations, it would be of

considerable interest to investigate the reinforcing proper-

ties of such oblate particles when they are randomly

oriented and also randomly dispersed. Such work is in

progress [59].
5. Aggregated particles
5.1. Real systems

The silica or carbon black particles used to reinforce

commercial materials are seldom completely dispersed

[1–5], as is assumed in the simulations described. As is

shown schematically in Fig. 13, the primary particles are

generally aggregated into relatively stable aggregates and

these are frequently clustered into less stable arrangements

called agglomerates.
5.2. Types of aggregates for modeling

Simulations should be carried out on such more highly

ordered structures, some limiting forms of which are



Fig. 12. Mooney–Rivlin representations of simulated elongation isotherms for

an elastomer reinforced by prolate filler particles. The subscript z designates

values in the direction of the stretching used to generate the ellipsoidal

particles, and the subscript x designates values in either of the perpendicular

directions. The elongation has been corrected for stain amplification [20].

Fig. 14. Four illustrative types of aggregates: a, chainlike, b, globular, c,

star-shaped, and d, branched.
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sketched in Fig. 14 [59]. It is well known in the industry that

such structures are important in maximizing the reinforce-

ment, as evidenced by the fact that being too persistent in

removing such aggregates and agglomerates in blending

procedures gives materials with less than optimal mechan-

ical properties [1–5].

5.3. Deformabilities of aggregates

Friedlander et al. have demonstrated that such

aggregates have a remarkable deformability, by carrying

out elongation experiments both reversibly and irrever-

sibly to their rupture points [84–89]. This is of con-

siderable importance, since when these structures are

within elastomeric matrices, their deformations upon

deformation of the filled elastomer means that they must

contribute to the storage of the elastic deformation

energy. This would have to be taken into account both

in the interpretation of experimental results and in more

refined simulations of filler reinforcement.
6. Potential refinements

This excluded volume effect is only one aspect of
Fig. 13. Sketches of primary particles, aggregates, and agglomerates

occurring in fillers such as carbon black and silica.
elastomer reinforcement [6–12], but some additional

effects could be investigated by modeling the adsorption

of the elastomer chains onto the filler surface. This

could be done by first assuming Lennard–Jones inter-

actions between the particles and chains, in physical

adsorption. These aspects could then be extended to

include chemical adsorption by assuming that there are

randomly-distributed, active particle sites interacting

very strongly with the chains (by a Dirac d-function
type of potential). If the distance between the chain

(generated using the Monte Carlo method) and the

active site becomes less than the range of the short-

range interactions, then the chain would become

chemisorbed. The distribution of other active sites on

the filler surface and the Lennard–Jones interactions

would determine if the remaining parts of the chain are

absorbed onto the surface. Simulations for chains

sufficiently long to partially adsorb onto several filler

particles would be especially illuminating, in that they

could shed new light on the general problem of polymer

adsorption. The distribution of the chain contours

between the polymer bulk and various filler particles

could also be of considerable importance.
7. Conclusions

Although there are obviously unresolved issues, the

broad overview presented here should demonstrate the

utility of simulations to give a better molecular under-

standing of how fillers reinforce elastomeric materials. It is

also hoped that some of the unsolved problems described

will encourage others to contribute to elucidating this

important area of polymer science and engineering.
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[22] Szilágyi A, Gyenes T, Filipcsei G, Zrı́nyi M. Macromolecular

Symposia accepted.

[23] Fuchs M, Schweizer KS. J Phys Condens Matter 2002;14:R239.

[24] Vacatello M. Macromolecules 2002;35:8191.

[25] Ozmusul MS, Picu RC. Polymer 2002;43:4657.

[26] Picu RC, Ozmusul MS. J Chem Phys 2002;118:11239.

[27] Starr FW, Schroeder TB, Glotzer SC. Macromolecules 2002;35:4481.

[28] Mark JE. Mol Cryst Liq Cryst 2002;374:29.

[29] Schmidt G, Malwitz MM. Curr Opin Colloid Interface Sci 2003;8:103.

[30] Vacatello M. Macromolecules 2003;36:3411.

[31] Vacatello M. Macromol Theor Simul 2003;12:86.

[32] Hooper JB, Schweizer KS, Desai TG, Koshy R, Keblinski P. J Chem

Phys 2004;121:6986.

[33] Vacatello M. Macromol Theor Simul 2004;13:30.

[34] Barbier D, Brown D, Grillet AC, Neyertz S. Macromolecules 2004;

37:4695.

[35] Sharaf MA, Mark JE. Polymer 2004;45:3943.

[36] Kloczkowski A, Sen TZ, Sharaf MA. Polymer 2005;46:4373.

[37] Lin H, Mattice WL. Abstracts, POLY Workshop on molecular

modeling of macromolecules, Hilton Head; 2004, PA10.

[38] Ozmusul MS, Picu RC, Sternstein SS, Kumar SK. Macromolecules

2005;38:4495.

[39] Lin H, Erguney F, Mattice WL. Polymer 2005,46:6154.

[40] Sen TZ, Sharaf MA, Mark JE, Kloczkowski A. Polymer; in press.

[41] Flory PJ. Statistical mechanics of chain molecules. New York:

Interscience; 1969.

[42] Mattice WL, Suter UW. Conformational theory of large molecules.

The rotational isomeric state model in macromolecular systems. New

York: Wiley; 1994.

[43] Rehahn M, Mattice WL, Suter UW. Adv Polym Sci 1997;131/132:1.

[44] Flory PJ. Principles of polymer chemistry. Ithaca, NY: Cornell

University Press; 1953.

[45] Mark JE, Curro JG. J Chem Phys 1983;79:5705.

[46] DeBolt LC, Mark JE. J Polym Sci, Polym Phys Ed 1988;26:865.

[47] Mark JE, Curro JG. J Chem Phys 1984;80:5262.

[48] Treloar LRG. The physics of rubber elasticity. 3rd ed. Oxford:

Clarendon Press; 1975.
[49] Mark JE. J Phys Chem, Part B 2003;107:903.

[50] Mark JE. Macromol Symp, St Petersburg Issue 2003;191:121.

[51] Mark JE. Acc Chem Res 2004;37:946.

[52] Sunkara HB, Jethmalani JM, Ford WT. Chem Mater 1994;6:362.

[53] Sunkara HB, Jethmalani JM, Ford WT. In: Mark JE, Lee CY-C,

Bianconi PA, editors. Hybrid organic–inorganic composites, vol. 585.

Washington, DC: American Chemical Society; 1995. p. 181.

[54] Pu Z, Mark JE, Jethmalani JM, Ford WT. Polym Bull 1996;37:545.

[55] Pu Z, Mark JE, Jethmalani JM, Ford WT. Chem Mater 1997;9:2442.

[56] Nakatani AI, Chen W, Schmidt RG, Gordon GV, Han CC. Polymer

2001;42:3713.

[57] Nakatani AI, Chen W, Schmidt RG, Gordon GV, Han CC. Int

J Thermophys 2002;23:199.

[58] Sen TZ, Kloczkowski A. Unpublished results.

[59] Abou-Hussein R, Mark JE, Sharaf MA. Unpublished results.

[60] Holmes GA, Letton A. Polym Eng Sci 1994;34:1635.

[61] Okamoto Y, Miyagi H, Kakugo M, Takahashi K. Macromolecules

1991;24:5639.

[62] Chen TK, Jan YH. J Mater Sci 1992;27:111.

[63] Erman B, Mark JE. Structures and properties of rubberlike networks.

New York: Oxford University Press; 1997.

[64] Premachandra J, Mark JE. J Macromol Sci, Pure Appl Chem 2002;39:

287.

[65] Premachandra J, Kumudinie C, Mark JE. J Macromol Sci, Pure Appl

Chem 2002;39:301.

[66] Urayama K, Kohjiya S. Polymer 1997;38:955.

[67] Kohjiya S, Urayama K, Ikeda Y. Kautschuk Gummi Kunstoffe 1997;

50:868.

[68] Urayama K, Kohjiya S. Eur Phys J B 1998;2:75.

[69] Erman B, Mark JE, Eirich FR. In: Mark JE, Erman B, editors. Science

and technology of rubber. 3rd ed. Amsterdam: Elsevier; 2005.

[70] Medalia AI, Kraus G. In: Mark JE, Erman B, Eirich FR, editors.

Science and technology of rubber. 2nd ed. San Diego: Academic

Press; 1994. p. 387.

[71] Fried JR. Polymer science and technology. 2nd ed. Englewood Cliffs,

NJ: Prentice Hall; 2003.

[72] Okada A, Kawasumi M, Usuki A, Kojima Y, Kurauchi T,

Kamigaito O. In: Schaefer DW, Mark JE, editors. Polymer-based

molecular composites, vol. 171. Pittsburgh: Materials Research

Society; 1990. p. 45.

[73] Pinnavaia TJ, Lan T, Wang Z, Shi H, Kaviratna PD. In: Chow G-M,

Gonsalves KE, editors. Nanotechnology. Molecular designed

materials, vol. 622. Washington, DC: American Chemical Society;

1996. p. 250.

[74] Giannelis EP. In: Mann S, editor. Biomimetic materials chemistry.

New York: VCH Publishers; 1996. p. 337.

[75] Vaia RA, Giannelis EP. Polymer 2001;42:1281.

[76] Pinnavaia TJ, Beall G, editors. Polymer–clay nanocomposites. New

York: Wiley; 2001.

[77] Auerbach SM, Carrado KA, Dutta PB, editors. Handbook of layered

materials. New York: Marcel Dekker; 2004.

[78] Fischer H. Mater Sci Eng, C 2003;23:763.

[79] Ray SS, Okamoto M. Prog Polym Sci 2003;28:1539.

[80] Ahmadi SJ, Huang YD, Li W. J Mater Sci 2004;39:1919.

[81] Kawasumi M. J Polym Sci, Polym Chem Ed 2004;42:819.

[82] Wang S, Mark JE. Macromolecules 1990;23:4288.

[83] Wang S, Xu P, Mark JE. Macromolecules 1991;24:6037.

[84] Ogawa K, Vogt T, Ullmann M, Johnson S, Friedlander SK. J Appl

Phys 2000;87:63.

[85] Suh YJ, Ullmann M, Friedlander SK, Park KY. J Phys Chem B 2001;

105:11796.

[86] Friedlander SK, Jang HD, Ryu KH. Appl Phys Lett 1998;72:11796.

[87] Suh YJ, Prikhodko SV, Friedlander SK. Microsc Microanal 2002;8:

497.

[88] Suh YJ, Friedlander SK. J Appl Phys 2003;93:3515.

[89] Rong W, Pelling AE, Ryan A, Gimzewski JK, Friedlander SK. Nano

Lett 2004;4:2287.



mer 4
James E. Mark received his B.S. degree in

1957 in Chemistry from Wilkes College and

his PhD degree in 1962 in Physical Chemistry

from the University of Pennsylvania. After

serving as a Postdoctoral Fellow at Stanford

University under Professor Paul J. Flory, he

J.E. Mark et al. / Poly8904
was on the faculties of the Polytechnic Institute

of Brooklyn and the University of Michigan,

where he became a Full Professor in 1972. In

1977, he assumed the position of Professor of

Chemistry at the University of Cincinnati, and

served as Chairman of the Physical Chemistry Division and Director of the

Polymer Research Center. In 1987, he was named the first Distinguished

Research Professor, a position he holds at the present time. Dr Mark is an

organizer and participant in a number of short courses, and has published

approximately 650 research papers and coauthored or coedited 22 books.

He is the founding editor of the journal Computational and Theoretical

Polymer Science, which was started in 1990, is an editor for the journal

Polymer, and serves on a number of journal Editorial Boards. He is a Fellow

of the New York Academy of Sciences, the American Physical Society, and

the American Association for the Advancement of Science. Recent awards

include the Whitby Award and the Charles Goodyear Medal (Rubber

Division of the American Chemical Society), the ACS Applied Polymer

Science Award, the Flory Polymer Education Award (ACS Division of

Polymer Chemistry), election to the Inaugural Group of Fellows (ACS

Division of Polymeric Materials Science and Engineering), the Turner

Alfrey Visiting Professorship, the Edward W. Morley Award from the ACS

Cleveland Section, the ACS Kipping Award in Silicon Chemistry, the Reed

Lectureship at Rensselaer, and an Award for Outstanding Achievement in

Polymer Science and Technology from the Society of Polymer Science,

Japan.
Reda Abou-Hussein is currently a graduate

student at chemistry department, University of

Cincinnati. She obtained her B.S. degree in

chemistry from the University of Helwan,

Cairo, Egypt. With a thesis titled ‘Computer

Simulations of Some Polymeric Systems’, she
earned her M.S. in physical chemistry in 2001

from Univeristy of Helwan and later the same

year she joined Prof J.E. Mark’s group. Her

research focuses on computer simulation of

polymers using Monte Carlo and molecular

dynamics techniques, nanocomposites, gas diffusion in PDMS membranes,

and improvements of mechanical properties of biodegradable copolymers

(NODAX). She received an Outstanding Poster Presentation Award at the

Annual Oesper Symposium on October 2004. As a recognition of her efforts

as a senior teaching assistant in chemistry department, she was honored

with the Stella and Hoke S. Greene Award in May 2004.
Taner Z. Sen received his bachelor’s degree in

chemical engineering at Bogazici University,

Turkey in 1996. He obtained his master’s

degree in chemical engineering from the same

institution in 1998, under the supervision of

Profs. Ivet Bahar and Burak Erman on polymer

6 (2005) 8894–8904
local chain dynamics. In 2003, he received his

PhD in polymer engineering at the University

of Akron, where he investigated structural

development of polymers under processing

with Prof Mukerrem Cakmak. During his PhD,

he received the Ticona Award for his academic success and service to the

department. He is currently a post-doctoral associate at Iowa State

University collaborating with Prof Robert L. Jernigan and Dr Andrzej

Kloczkowski. His main research interests include understanding how

polymers respond to processing and elucidating the dynamics and

interactions of proteins and nucleic acids.
Andrzej Kloczkowski, received his M.S. in

Chemistry from Warsaw University in 1974,

and PhD from the Institute of Physical

Chemistry of the Polish Academy of Sciences

in 1980. He was a post-doc at Stanford

University (1981–1983). He worked (1987–
1994) at the University of Cincinnati with Prof

James E. Mark on the theory of polymers and

rubberlike elasticity. In 1995 he moved to NIH

and started work in theoretical molecular

biology. Since 2002 he has been working as a

senior scientist in the Baker Center for Bioinformatics at the Iowa State

University. He has published about 100 peer-reviewed papers on statistical

mechanics of liquid crystals, polymers, proteins and bioinformatics.


	Some simulations on filler reinforcement in elastomers
	Introduction
	Description of simulations
	Rotational isomeric state theory for conformation-dependent properties
	Distribution functions
	Applications to unfilled elastomers
	Applications to filled elastomers

	Spherical particles
	Particle sizes, shapes, concentrations, and arrangements
	Distributions of chain end-to-end distances
	Stress-strain isotherms
	Effects of arbitrary changes in the distributions
	Relevance of cross linking in solution
	Detailed descriptions of conformational changes during chain extension

	Ellipsoidal particles
	General features
	Oblate ellipsoids

	Aggregated particles
	Real systems
	Types of aggregates for modeling
	Deformabilities of aggregates

	Potential refinements
	Conclusions
	Acknowledgements
	References


